486 research outputs found

    Limits on the deterministic creation of pure single-photon states using parametric down-conversion

    Full text link
    Parametric down-conversion (PDC) is one of the most widely used methods to create pure single-photon states for quantum information applications. However little attention has been paid to higher-order photon components in the PDC process, yet these ultimately limit the prospects of generating single-photons of high quality. In this paper we investigate the impacts of higher-order photon components and multiple frequency modes on the heralding rates and single-photon fidelities. This enables us to determine the limits of PDC sources for single-photon generation. Our results show that a perfectly single-mode PDC source in conjunction with a photon-number resolving detector is ultimately capable of creating single-photon Fock states with unit fidelity and a maximal state creation probability of 25%. Hence an array of 17 switched sources is required to build a deterministic (>99% emission probability) pure single-photon source.Comment: 7 pages, 6 figure

    Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime

    Full text link
    Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen-states (EPR-states). FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.Comment: 26 pages, 4 figure

    A bright, pulsed two-mode squeezer

    Full text link
    We report the realization of a bright ultrafast two-mode squeezer based on type II parametric downconversion (PDC) in periodically poled KTiOPO4\mathrm{KTiOPO_4} (PP-KTP) waveguides. It produces a pulsed two-mode squeezed vacuum state: a photon-number entangled pair of truly single-mode pulses or, in terms of continuous variables quantum optics, a pulsed, single mode Einstein-Podolsky-Rosen (EPR) state in the telecom regime. We prove the single mode character of our source by measuring its g(2)g^{(2)} correlation function and demonstrate a mean photon number of up to 2.5 per pulse, equivalent to 11dB of two-mode squeezing.Comment: 4 pages, 3 figure

    Theory of filtered type-II PDC in the continuous-variable domain: Quantifying the impacts of filtering

    Get PDF
    Parametric down-conversion (PDC) forms one of the basic building blocks for quantum optical experiments. However, the intrinsic multimode spectral-temporal structure of pulsed PDC often poses a severe hindrance for the direct implementation of the heralding of pure single-photon states or, for example, continuous-variable entanglement distillation experiments. To get rid of multimode effects narrowband frequency filtering is frequently applied to achieve a single-mode behavior. A rigorous theoretical description to accurately describe the effects of filtering on PDC, however, is still missing. To date, the theoretical models of filtered PDC are rooted in the discrete-variable domain and only account for filtering in the low gain regime, where only a few photon pairs are emitted at any single point in time. In this paper we extend these theoretical descriptions and put forward a simple model, which is able to accurately describe the effects of filtering on PDC in the continuous-variable domain. This developed straightforward theoretical framework enables us to accurately quantify the trade-off between suppression of higher-order modes, reduced purity and lowered Einstein-Podolsky-Rosen (EPR) entanglement, when narrowband filters are applied to multimode type-II PDC.Comment: 15 pages, 13 figure
    • …
    corecore